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The basic properties of nonrelativistic finite-dimensional quantum mechanics are
presented. A discrete quantum mechanics is developed. Second quantization, the
symmetric and antisymmetric Fock spaces are also discussed.

1. INTRODUCTION

There are three important reasons for studying finite-dimensional
quantum mechanics. First, finite-dimensional quantum mechanics ap-
proximates ordinary quantum mechanics and the approximation gets better
as the dimension increases. In this way, numerical methods can be utilized
to an arbitrarily high precision. Second, there appear to be good reasons to
believe in the existence of a fundamental unit of length (Atkinson and
Halpern, 1967, Gudder, 1968; Heisenberg, 1930). If this turns out to be
true, then the resulting quantum mechanics will be finite dimensional in the
bounded case, and discrete in the unbounded case. Third, finite-dimensional
quantum mechanics may lead to a deeper understanding of conventional
quantum mechanics. As we shall see, the Hilbert space L>(R?) of a single
nonrelativistic particle p is the second quantization of the finite-dimensional
space C3. The particle p can then be described in terms of more elementary
“particles” in C3. The quantum mechanics on L*(R?) can therefore be
thought of as a finite-dimensional quantum field theory, and its study may
shed light on the conventional quantum field theory.

In this paper we present the basic properties of nonrelativistic finite-
dimensional quantum mechanics. We expect to consider relativistic theory
and deeper aspects of finite-dimensional quantum mechanics, and quantum
field theory in later works:

619

0020-7748 /81 /0800-0619$03.00,/0 © 1981 Plenum Publishing Corporation



620 Gudder and Naroditsky
2. QUANTUM MECHANICS ON C”

In the sequel, ¥'=C" and e,..., e, is the standard basis ¢,(k)=8, on
V. The projection operator Q; onto ¢, is called the jth location observable.
For any f€V, we have (Q;f)k)=8;, f(j) and Q;f=f(j)e; Any real
function of the Q,’s is called a location observable and every location
observable has the form 4=2g(j)Q,; =g-Q where geR’. For any fEV, we
have (Af)(/)=g()f())-

Define the finite Fourier transform (Auslander and Tolimieri, 1979) F:
V-V as

(Ff)( 41/2 2 f(k 2mijk/r
Then F is unitary and
(o)) =r ™2 3 f(k)e 27
k=1

The matrix elements of F are Fy=(Fe,,e;y=r"'/%>"/*/". The operator
P, =F*Q,F is a projection onto the vector f,=F*e; and is called the jth
motlon observable Any function B=2g( ])P =gP of the P’s is called a
motion observable.

The matrix elements of P, are (P,);, =(P,e;, e,y =r " 'e*""* =)/,

Let Q be the location observable defined by (Qf WH=if()), 0=2jQ;.
Thus, Q represents a location observation for a particle which can be
located at one of the points 1,2,..., 7. The eigenvectors of Q are e; with
corresponding eigenvalues j, j=1,..., r. Let P=F*QF=2X jP, be the motion
observable corresponding to Q. The eigenvectors of P are f, =F*e;, with
corresponding eigenvalues j, j=1,..., 7

The motion observable P is the infinitesimal generator of a one-
parameter unitary group V(a)=e'*f=3e'*P,. Letting a=2am/r, meN,
we have

r
[ei(2-”m/r)1> ]jk:r -1 2 ei21rmn/r621rin(k—j)/r

n=1

, r
-1 2 elmintk—j+tm)/r — 2 (Pn)j,k+m:81’k+”‘

n=1
(mod r) in m. Hence,

[ei(lvrm/r)Pek] = <ei(21rm/r)Pek’ ej) :3j e
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and e’®™m/NFfe, =¢, . (modr). This is why P is called a motion observa-
ble; it generates a dynamical group ¥(a) which moves a particle from
location & to location k+m (modr) in time 2wm/r. It follows that
[(VQam/r)f[(k)=f(k—m), (mod r), for all f€V. One can also observe the
motion property of P by viewing the dynamics ¥(a) in the Heisenberg
picture. A simple computation shows that ¥{(—2am/r)QV(2am/r)=Q+
ml (modr).

Since P and Q are bounded observables, the Heisenberg form of the
commutation relation cannot hold. In order to derive [Q, P] notice that

r r

Py= 2 n(Pn)jk:r_l 2 nerminten/r
n=1 n=1

Since

(QP)jk: > Qb= zn(SjnPnk =jPy
and similarly (PQ) i« =kP;; we have

[Q’P]jk:(j—k)l’,-kz(j—k)r_‘ S pe2wintk=p/r

n=1

A discrete version of the Weyl form of the commutation relations does
hold. In fact, if sEN, and tER, we have

ei(Z-nt/r)Qei(Zm/r)P — ei21rtx/re i(2ws/r)Pei(27rt/r)Q
This follows from
ei@m1/1Q oiQ2ns/r)P, . :ei(Zwl/r)Qen+s :ei[27rt(n+s)/r]en+s
:ei2ms/rei2m‘n/ren+s :ei2-n'ts/rei(ZWs/r)PeiZwtn/ren

= @i2mts/1piQ2ms /1) Pyi2ut/T)Q e,

It should be mentioned that Q need not be an actual position observa-
ble—it could be a spin observable or any other observable with a finite
number of values. Also, although the usual Heisenberg uncertainty principle
does not hold in finite dimensions, it does hold in the following weaker
sense. Suppose the system is in a movement state f, = F' *e;. Then P has an
exact value j and dispersion zero. The probability that Q has value k
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becomes

(Qk]j-7l§>:|<ekafj>|2:|<Fekaej> =|F k|2—r

Since this holds for all k=1,..., r, Q has uniform distribution. Thus, Q is
completely undetermined in this state and has maximal dispersion. Of
course, the analogous result also holds for location states.

The above theory converges to the usual one-degree of freedom quan-
tum mechanics in the following sense. Let H=L12[0,1] and let g and p be the
usual position and momentum operators. Then there exist subspaces H, of
dimension r such that H, — H in that for every f€ H there exists a sequence
f.€H, such that f,—f and for every such sequence f,, the sequence of
location observables g, satisfies gq,f, —qf and for every f€D(p), the se-
quence of motion observables p, satisfies p,f, »pf. To see this, let P =
(0,r71,2r71...,1} be a partition of [0,1] and let H, be the set of step
functions which are constant on the intervals of &. Then H, is an r-
dimesnional subspace of H and H, is isomorphic to €". Now define ¢,:
H —H by (qf)x)=mr 'f(x) for (m—1)r '<x<mr~'. Then g, is
isomorphic to the location observable considered above and g, —¢. Indeed,
suppose f, EH, and f, —f. We can assume f is bounded and | f,|<M. Then

lg.fi—afI<lig.f,—aflI+llqf,—qf
<llg,f—qfll+lgllllf—1I

Then the last term approaches 0 as r— oo and

laf—af1°= [ g, £, —afPdx

=3 [ - ah (0P

m=1"(m—Dr~
—1 r
<M 2 f Jmr Tt =xPdx<M F r<Mr !0 asr—oo
m=1"(m=1r"! m=1

Now define p,: H,—~H, by p, F*q,F Then for f,=X{n—1)r-1, n,—1; We have
e'Cm/npf =f (mod r), s= , r. Hence, for any f€ H, we have

[ei(2m/’)1’rf](x) _ ]:ei(Z'nS/r)Prz Cnfn](x) = 2, frss(X)
=3, flx—sr ) =f(x=sr"")
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Thus, if f,—f, we have e’@™/"Prf — ¢2™Pf where 5, /r—5[0,1]. The above
considerations can be extended to L*[0, 0], and by redefining F they can
also be extended to L*(R). Furthermore, we can extend these results to
L*(R"™).

We close this section by deriving explicit formulas for the matrix
elements of P which will be convenient for later examples. Let =3 JQ, be
a location observable, and P=3 JP; the corresponding motion observable
By differentiating the equation

I B~

l)c":()c’“—)c)(x—lf1

n

we obtain
é :[ (r+1)x’+’+x](x——l)

Hence, by some algebraic manipulation we obtain

’ o 1 icotm(k—j
Pp=r~' 3 nerinthn/r—~ |1 7(k=j)

n=1 r

for j#k and
ij:r‘l gln:(r+l)/2

This gives the following formula for the matrix elements of the commutator;

i~k icotw(k—j) _
[Q’P]jk: > 1+ - | JF*Ek
0, j=k

3. DYNAMICS

In this section we consider dynamics on V=C’. A vector a=
(ay,...,a,)ER" specifies a location observable a-Q=3a,Q, and a motion
observable a-P=2a,P,. We call a€R" the basic location vector for the
system. The basic location vector also specifies a free Hamiltonian or free
energy observable H,=2"'(a-P)*=2"'342P,. The matrix elements of H,
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become

r r

B 1 wilk—j)/r
(Ho)jk:2 1 E afl(Pn)jk:E.'j E aiez k—j)/
n=1 n=1

For example, let a,=n—1, n=1,...,r. This would represent a particle
located at one of the points 0, 1,..., r— 1. Then using the equation

et 22+ 1)x? x"T(x+1)
=1 (x=1) (x=1)

S (n—1)'xn="
n=1

we obtain
,

; 1 Ti(k—j)/r
(Ho) k=57 3 (n=1)e2rite=s/
n=1

cot’m(k—j icot 7(k—j
1 1 leot’m(k=j) icotm(k=/)

2 22 r r
if j#k, and

1< 2, (r=1)(@2r-1)

(H, ”_E,El(n 1) =0

Let us now return to a general basic location vector a€R’. The
dynamics is given by the one-parameter unitary group

,
U(r)=e o= Y ¢~Hai/2P  (ER

n=1

If the system is initially in the state e, (the particle is located at the point
k—1), then the probability that the system will be in the state e; (the particle
is located at the point j—1) at time ¢ is

@kj(t):Ke_”Hoek’ej>|2:|(e_itHo)jk|2'

Now

r r
(e7iHo) = e_"”‘g/z(Pn)jk =r~! 21 expi[—taf,/2+27rn(k—j)/r]
=1 n=

n



Finite-Dimensional Quantum Mechanics 625

Hence,
(em)p2=r 3 expil§ (an—a) + 2 (nmm) (k)
:r‘z{r+2 é” cos[é(a,zn—a3)+27w(n—m)(k—j)}}

In particular, we have

|(e_itH0)jjt2:rw2 2 m n

r+2 3 cosl(a2 —az)}

m>n=1

Important information about the system is given by the average loca-
tion at time ¢ given the initial state e,. This is given by the following
formula:

(O (1)=(QU(t)e,,U(t)e,y= < é anjU(t)ek’U(t)ek>

J=1

= 3 4 (U0)ern e Ul0)e,)

= 21 a;(U(t)ey,e;)(e;, U(t)e)

7

= 'él aj|<U(t)ek’ej>|2 = 21 ale(t)jk‘Z
i= J=

The matrix elements of |U();,|*>=|(e "), |> can now be read off from
the previous formulas.

So far we have worked with location states since they have important
physical significance. However, we can also consider other pure states. Let
JEV represent an arbitrary pure state. In the motion representation, we
have

e~thf=e M T (f.f0h= TS fye ",
n=1 n=1

If g€V represents another pure state, the transition probability at time 7
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becomes

2

n= m=1

2

= 3 (S L) o g8,

n,m=1

2

=\ 3 (Fh ) S g
n=1

The transition probability at time ¢ in the location representation is

2

e iof, g)|>= <e""”" 2 1(Dep 2 g(k)e">
j=1 k=1

2

= S AHFE (),

Jrk=1

Now suppose the system finds itself in a potential V=5-Q, bER’, and
the free energy has the general form H,=2" (a-P)%. The total energy
observable becomes

H=H,+V=2"Y(a-P)’+b-Q=2""'Fa2P,+ 35,0,
The matrix elements of H are

LS 2 itk
Hy =5~ EIane THEZD/T b 8,
-

In particular, the average energy in the state e, becomes

r

1
(H) =(He;,e;)=H;= 55 Elaﬁ +b,

In general, the eigenvalues and eigenvectors of H are extremely difficult to
calculate and an explicit formula for the dynamics e ~## cannot be given. In
the next section we shall give some specific low-dimension examples that
can be solved exactly. If the eigenvalues A, and corresponding eigenvectors
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w» n=1,..., r, are known, then the matrix elements of U(¢)=e ~*# become
r
— y a—itH, — —irA
U(t)jk_<e " ek5ej>— E <ek’4/n>¢n’ej>e i
n=1

Knowing these we can then compute the transition probability

@kj(t):|U(t)jk|2 and (Q),(1)= X ale(t)jk|2
j=1
Although the eigenvalues and eigenvectors of H=H,+ V' cannot be
found exactly in general, approximations can be found using perturbation
theory. Let H=H, +¢V, where Hy=2"'(a-P)? and V=5b-Q. Then for ¢
sufficiently small, the eigenvalues A (&) and corresponding eigenvectors f,(€)
of H are analytic (Kato, 1966) and we have

A(e)=A, te), +£2)\n,2 + ..

fn(e):fn +ef, "‘Ezfn,z +--

for n=1,...,r. Clearly, A, (0)=X,=a?2/2, the nth eigenvalue of H, and
[(0)=f,=F*e,, the corresponding eigenvector. Since

(HO+£V)(j;1+£fn,1 +82fn,2 + - '):(An+e>\n,l +e )ttt o)
comparing coefficients of € gives
Hofy P VE=N ot A,
Taking inner products with f, gives
(s Holu) + Vi L) =M s £ HAL
Since H, f, =\, f, we have
A =Vh fy=r 1 2b=r"'uV
Taking inner products with f,,, m#n, gives

}\m<j;z,1’ fm>+<an’ fm>:>‘n<f;z,l’ fm>
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Hence,

<fn,1’ fm>:(An—Am)_1<Vf;z9 fm>

:(An _}\m)‘lr—l EbjeZ'lrij(m-n)/r
J

and

S = 2 Clats Jon D

mn

is solved explicitly. Higher-order perturbation terms can be computed but
they become more complicated.

4. EXAMPLES

Let V=C? and let a=(0,1)ER? be the basic location vector. The
location observable is Q=a-Q=0Q, +1Q,=0,. The finite Fourier trans-

form is
_17—1 1]
F”z[ 11
and the first and second motion observables become
21 -2t |27t 271
Pl[_z—l 2—1]’ P2~|:2—1 2—1]

The motion observable is P=a-P=0P +1P,=P, and the free energy
observable is Hy=2"'P2=2"Y(a-P)>=2"'P,. The dynamical group now
has the form

U(t)=e Ho=¢="0p +e /2P, =P +e /2P,

_1 14e 2 —14e2
S 2| —qqei2 1+e %2

The transition probability 9, /(t) from the location state e, to the location
state e, after time ¢ becomes

?ij(t)=|U(t)jk]2=%{1+cos[%t+7r(k—j)]}.
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In particular, &, (¢)=3(1+cos3¢). Thus, if a particle is initially at location
0, then it will oscillate back and forth between 0 and 1 with period 4#. This
becomes particularly clear by noting that

2

()= 2 ale(t)jklz:%Ie—it/z_llzz_;'(1~COS%).
j=1

Now suppose the system is in a potential ¥=5-Q, b=(b,, b,) ER>.
The total energy becomes

~ 1] 1+, 1

1 1+b,

The eigenvalues of H are
=872+, +b,— (4+(5,-5,)") "]
>\2=8“‘[2+b, +b2+(f+(bl—b2)2)vz}

Letting ¢c=b, —b,, the corresponding normalized eigenvectors are

b=N(1,27c—(@+¢2)")
v =N,(1.27 e+ (@+c1)7))
where N, N, are the normalization constants
Ny =224+ c[c—(4+c2)]2)
Ny =224+ c[c+(@+c)]2)
The matrix elements of U(t)=e ~*! are

U(1) = e b0t e,5e ™Moy ) (g, e, )e i

Now suppose the system represents a particle whose admissible loca-
tions are 0 and 1. If the particle is initially at the point 0, then the
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probability the particle will be at the point 0 at time 7 is
PL()=|U(2),,|> =|NEe "™ + Nfe 2|2
=N} +N;) +2N12N22cos(}\2‘—}\1)t
=[4+c2] 7 [2+¢c2 +2c0s4 (4 +c2) |
Notice that
[4+c] "2 <9, (1)<

and 9P, ,(¢) oscillates between these two values. As |b, —b,| -0 then & (1)
approaches the free case and as |b, —b,|— o0, &P,,(#) approaches 1 for all ¢.
Thus, as the potential difference gets large, the particle tends to remain at
its initial position. If the particle is initially at 0, the average position of the
particle is

<Q>l(t):|U(t)21 2:1_|U(t)11|2:1_@11(t)

It follows that on the average, the particle remains between 0 and 4[4 +¢2] .
Again, as the potential difference |b, —b,| gets large, the particle remains
near its initial position on the average.

The physical significance of the energy eigenstates i, Y, in terms of the
particle position may be seen as follows. The average position in the state ¢,
is

(@3, = (0¥, ¥) = (@, b1 =l )2
=N~ @4+
“[orerctare) o ctarery ]

Similarly,
<Q>¢2:[2+c2+c(4+62)1/2] [4+c2+c(4+c2)‘1/2]"

For ¢=0, we get the free case (Q), =(Q),,= 1. For ¢#0, we have
(@54, <{Q),, Thus, in the lower-energy state ¢, the particle is closer to 0
than in the higher-energy state y,. Also, notice that (@), +{@), =1 and

<Q>‘P1_)O’ <Q>‘l/2_)l as €= 0.
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For our next example, we consider ¥=C*and leta=(—3,—1,3,)ER*
be the basic location vector. We shall apply formulas in Sections 2 and 3 to
compute various observables and quantities. The location observable Q=
a-Q=2a,0Q, becomes

-3 0 0 0
| 0 -1 0 0
2= o 0 3 0
0 0 0 1
The j-motion observables, j=1,2,3,4 are
[ 1 i =1 =il 1 -1 1 -1
_1 =i i —1 _lf-1 1 -1 1
=gl o1 - o E ) I . 1 -1
| i -1 =i 1] [ -1 1 -1 1
1 =i -1 i 11 1 1
_1 1 —i -1 _1l1 111
B=71 1 i 1 =il BTI o110
L —i -1 i1 1 1 1 1

The free energy observable H,= 9P, +4P,+39P,+ 1 P, is

5 0 -4 0
_11 0 5 0 —4
Hy= 2] —4 0 5 0

0 —4 0 5

The free dynamical group U(r)=e "Ho=e™"*/2P +e /2Py +e™ /2Py +
e~ /2P, becomes '

e—it9/2+e—it/2 0
1 0 o9/ 4 o=it/2
U(r)= 2| —pmivr2q pmit2 0 .
0 e i19/2 4 pit)2
e—i19/2 4 p=it/2 0
0 =192 4 p—it)?
e~ i19/2 4 p—it/2 0

0 e i19/2 4 pit/2
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The transition probabilities become
%, (1)=2""(1+cosdmr), P, (1)=F,,,(1)=0
D, o(1)=9,, (1)=27"(1—cosnt)
The average location is{Q),(?)=a,cos4t.
Now suppose the system experiences a potential V=5-Q, b=

27Y(by, by, by, b)) ER®. The total energy is H=H,+ V. The energy eigen-
values become

N 10+b, by + (b, —by)+64] 2
=
4

1046, +by—[ (b, —b,)*+64]*
A, = 7

10+b, +b, +[ (b, —b,)*+64] "
Ay = 7

1045, +b, — [(b, —b,)*+64]'
A= 7

and the corresponding (unnormalized) eigenvectors are

1 1
0 0
o=| Stb,—A |, ¢,=| 5+b —A,
— —
L 0 i B 0 i
~ 0 - _ 0 -
1 1
3= 0 , = 0
5+b,—A, 5+b,—A,
L 4 | | 4 ]

One can now compute ?Pj.k(t) and {Q),(¢) using previous formulas.

The reason that everything was easy to compute in the last example was
because of the symmetry of the basic location vector a €R*. This resulted in
degeneracies in H, and the system could be described by two uncoupled
two-dimensional parts. Suppose now we have an unsymmetrical basic



Finite-Dimensional Quantum Mechanics 633

location vector such as a=(0,1,2,3)ER*. Then the situation is much more
complicated. For example,

6 2—2i 2 2+2i
1[2+2i 6 2—2i 2
41 2 242 6 22

2—2i 2 2+2; 6

P=

and
U(t)=P,+e ""/’P)+e 2Py +e™"9/?P,

The diagonal transition probabilities become

()= [4+2 (cosi +cos2t+cos g t+cos%t+cos4t+cos% ) ]

The particle now experiences a complicated periodic motion.

5. DISCRETE QUANTUM MECHANICS

We have shown earlier that as the dimension approaches infinity, the
finite-dimensional quantum mechanics approaches the usual quantum
mechanics. However, we could also jump immediately to an infinite-
dimensional discrete quantum mechanics. Let /={0, =1, =2,...} be the set
of integers and let ¥ be the Hilbert space [*(I)={f: I->C: 3| f(n)|>*<o0}.
The natural location observable is the operator @ on V with domain
D(@)={feV:nf(n)eV} defined by (Qf Xn)=nf(n) for all fED(Q).
Since we have no Fourier transform on V, it is not clear how the motion
observable P should be defined. However, it is reasonable to assume from
our previous work that (e™?f ) (n)=f(n—m), n, mE1.

It turns out to be more convenient to work in the Hilbert space
L?[0,27] using the unitary transformation T: V- L2[0,27] given by

(Tf)(x)=(27)" > 2 f(n)e™

The transformed location observable O becomes

(0F)(x)=(TT "7 )(x)=[T(n ( £,27) e} )| (x)
:(277)_!2”<f,einx>einx:_l-_déx_(zﬂ_)_lg <f,einx>einx

=i (x)
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To be precise, D(Q) is the set of absolutely continuous functions f on [0,27]
such that f'€L2[0,27] and f(O) =fQ2w). For fED(Q), Of=—if". The
transformed motion observable P satisfies

(emff )(x)= (TemPT ~f )(x) = (T( £, (2m) "/ Zer ™) ) (x)
— (277)—1 2 <f, ei(n—m)x>einx :eimxf(x)

We can therefore define (Pf )(x)=xf(x) for all f€L?[0,2].

We now drop the caret on Q and P and work exclusively on L?[0,27].
The location eigenvectors are the orthonormal basis ¢, =(27)~ lel/* The
free energy observable is Hy=2" 1p2=2"1x2 and the free dynamical group
is U(t)=e ~"*""/2, The transition probability from the jth to kth location
state is

2

9,(1)=2m) "

fexp{—i[x(z_lt)l/2+(k—j)(2t)_1/2]2} dx

For t0 this can be written as

2

9,(1)=m) | fe{~i[x )+ (k=) 7] ax

This gives a Fresnel integral whose values may be obtained from tables.
The average location given the initial state v is

@) ()=2m) "' {(QU(t)y,, ¥;)

:(277)‘1 <—i%e_"x2‘/2+ijx, o ~ixX*1/2+ijx >
:(ZW)_lfzw(_xt‘i“j)dx:~_t77-+j
0

This represents a particle moving at constant velocity — .

Suppose we have a potential —aQ;, a>0, in location space. This
corresponds to the operator V'=—aQ; on L2[0 27], where Q; is the
projection onto the vector ;. The total energy observable is H= x?2 / 2—aQ;.
Solving the eigenvalue equation Hy=E+ gives

1

=a(¥. ¥ (x*/2=E)
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Taking the inner product with ; gives
a”! =77‘1f2”(x2 —2E) 'dx
0

It follows that E<O and that E is the solution of the equation ¢ '=
7 Y(—2E)"2tan"'27(—2E)"'/2. Thus H has the single eigenvalue E
and the rest of its spectrum is continuous.

As another example, suppose we have a potential V'=Q. Then H=
X /4—zd/dx and the eigenvalue problem Hy=E3y{ has solutions =
ce “MEx=%/) Tq satisfy the periodic condition for D(Q) we must have
¥(0)=y(2). This implies that E must have the form E,=n+Q2x)*/3,

n=0,+1,%=2,.... The corresponding normalized eigenvectors are ¢, =
@m)~ e’(E *=x/3) The average location in the energy eigenstate ¢, is
(@)=, 6:y=(2m) " [7(E,~x?) dx=n

6. SYMMETRIC HILBERT SPACE

In this section and the following section we shall describe finite-
dimensional nonrelativistic quantum field theories. In particular, we shall
consider the symmetric Hilbert space for ¥=C" in the present section and
the antisymmetric Hilbert space for V in the next section.

Let V=C" and SV=CO®VOV®V)OVESVEV)® --- be the
symmetric Hilbert space for V, where (5) denotes the symmetric tensor
product. Now SV is unitarily equivalent to L>(R") in a natural way. Indeed,
let e,,..., e, be the standard basis for C” and let &, € L*(R) be the Hermite
function

() =) A=) e e
dx
n=0,1,.... Then £, is a orthonormal basis for L*(R) and

h;, (xl, xr):hjl(xl)"'hj,(xr)

.....

Jis-++» J.=0,1,..., is an orthonormal basis for L*(R"). On the orthonormal
basis e{' §) - - - (§)e; define

J(ef'® - ®el)=h,; . (xp,e.s X,)
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Jis--» J,=0,1,.... Extending J, by linearity and closure gives a unitary
operator J,: S¥—L*[R"). In this way, LAR") may be thought of as the
symmetric Hilbert space for V. In particular, the pure states for the usual
nonrelativistic quantum mechanics on L?*(R*) can be written as superposi-
tions of states for three-dimensional “particles” in C>.

Define the annihilation operators 4(e;) on L*(R") by A(e;)=2""*(x,

+ d/0x;), j= , T Thelr adjoints are the creation operators A*(e; )*‘
—V 2(x -3/ 8x ), , 7. These operators satisfy
A(ek)hjl L _]k/zh —1--,

. 1/2
A*(ek)hjl---f,:(fk+1) PRyt

and the commutation relations [A(e)), A(ep)]=[4*(e;), A*(e;)]=0, [A(e)),
A*(e)]=48;

For arbitrary f€C", we define A(f)= S(e, f)A(e;) and A*(f)=
A(f)*=Z(f, e;)A*(e;). These operators satisfy

A(af+Bg)=aA(f)+BA(g)
A*(af+Bg)=ad*(f)+p4*(g)
and the commutation relations [A(f), A(g)]=[A4*(f), 4*(g)]=0,

[A(Cf), A*(g))=(g, f) for all f,geC", a,BEC. In terms of differential
operators we can write

A(f)=2*1/22f;(xj+% )=z~l/2(i-x+f-v)
J
A*(f)—_——’_)’“l/ZEfi(xj__éax_ ):2—1/2(f.x_f_ V)
J
We also define the self-adjoint field operators #( f), ¥( f) by
7(f)=27"[A(f)+4*(f )] =Ref-x—iImf- v
Y(f)=—i27[A(f)—4*(f)]= —Imf-x—iRef- ¥

For feC" a real vector, we have #( f)=f-x and ¢( f)= —if- V. In particu-
lar, m(e;)=x; and yY(e;)=—i0/0x;, the usual position and momentum
operators. Notice that for f restricted to R’, f>(#(f),¥(f)) gives a
quantum field on L*(R") in the following sense. The operators (1), ¥( f),
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fER’, are essentially self-adjoint on a common dense, invariant domain
with cyclic vector h,..,. The maps f-#(f), f=¥(f) are linear and
continuous in the strong operator topology. Moreover, 7 and ¢ are univer-
sally convariant. That is, if G is any group of unitary operators on R”, then
there exists a unitary representation g— U, of G on L*(R") such that

Ughy... .o and Ua( /YU, =7(gf ), Uph( /)T~ 1_IP(gf), for all g€
G fE[R’ Indeed defme U, on LZ(R ) by (U m(x)=h(g " 'x). It is easy to
check that g—- U, is a umtary representation. Also

Uhy.. o )(X)=hy. o(g7'x)=m /(s %7 0)/2
g"0---0 0---0

=g /4 —(XX)/2 =h,.. .;)(X)

and
[T ()Y, B ()= [T (£)Up-ih] (x)=[7(£ )] (2 ~'x)
=f-g7'xUh(g~'x)=1-g ~'xh(x)=gf xh(x)
=[=(g/)r}(x)
We also define the jth number operators
N(e,)zA*(ej)A(ej)zz—'l(—a—a—z+x 1 )
Jj=1,..., r. These operators satisfy
N(ek)hj,~~-j,:jkhj1~-j,

so the eigenvectors of N(e, ) are the basis vectors & ...,
are the nonnegative integers.
The total number operator is N(e)=2N(e, ) and satisfies

N(e )hjl A ( Z kj )hjl
The eigenvectors of N(e) are the basis vectors %, ..., and the eigenvalues

are the nonnegative integers. All of these are multliple eigenvalues except 0.
The differential operator for N(e) is

and the eigenvalues

2
N(e)=2"Y-3 ga—z—f- Exj.2~r1

j
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We now find the eigenvectors of the annihilation operators A(e;). Suppose
g€L*(R") and A(e,)g=Ag, AEC. Suppose g has the form g(x,,..., x,)=
u(x,)v(x,,..., x,). Then

du _
El‘ = (2 2 —x, )”(xl)

Solving this differential equation gives

1/2 42
g(xl)_._ceZ Axle xi/2
and hence

g(x,,...,x,)=ce? e/ 2 (x,,..., x,).

Thus A(e,) has a dense set of eigenvectors in L*(R") and every AEC is an
eigenvalue. Hence, a set of simultaneous eigenvectors for A(e,),..., A(e,)
with eigenvalues A,,..., A, €C, respectively, is

7 ~4exp(—4 TN Jexp( 2272\ x; Jexp(— D x?/2)

We denote this function by exp(ZAe;), and if f=2A e;, simply by exp f.
The vector exp f represents the pure state in which there are an infinite
number of “elementary” systems all in the state fEC". In fact, it is not hard
to show that

[®f [Of8f
@n'? 3y

J, '(expf)=|1. 1,
A simple calculation shows that
CXPf:eXP(%2<f, ej>2)h0-»-0(x1 _21/2<f’e1>""’xr_21/2<f’er>)

In particular, exp0=h,.. ., and expe;=e"/?hg. . o(X,..., x; =27, x,).
If one tries to solve the eigenvalue equation A*(e,)g=Ag, AEC, for the
creation operator A*(e,), then the only solutions are of the form

g(xp,..x,)=ce > ™Mex2p(x,,. ., x,)
Since g& L*(R"), the creation operators have no eigenvalues.

It is interesting to note that we have shown that L*(R") is the second
quantization of C". The finite-dimensional Hilbert space

[LZ(R’)]n:Sp{hh,_.j’;j.—}- "'+jr:n}
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represents the space of n-particle states and
LXR7)= @ [LZ(R ),
The operators A*(e, )A(e,) leave the subspaces [ L*(R")],, invariant and
. 1/2
A*(e‘k)A(el)hjl A (Je +1) / j[l/zhj[u el =1,

for k=1 [A*(e, )A(e,)=N(e,)]

We now consider second quantization of operators. Let H: V>V be a
normal linear operator with normalized eigenvectors 4,,..., 4, and corre-
sponding eigenvalues Aj,..., A,. The second quantization of H is the opera-
tor I'(H) on L¥R") defined by I'(H)=3\,4*(h,)A(k,). In terms of the
focation eigenvectors e, ..., e, this becomes

T(H)= 2 ARy e e, h,)A*(e;)A(e,)

n,j.k

The (unbounded) normal operator I'(H) has a complete set of eigenvectors
J.Ji 'hj,...; and corresponding eigenvalues A, j,., j, €{0,1,2,...}. In par-
ticular, we see that I'(Q,)=A4%(e,)A(e,)=N(e,) and I'(1)= EA*(e )A(e,)
=N(e). Moreover,

1 nheiy/r
D(P)=1 3 e /rge(e,)d(e,)
Ik

Now let U(t)=e “H be a dynamical group on V. The corresponding
dynamical group on L2(R”) is defined as U(¢)=e ~T*)_ 1t is well known
that U(t)exp f=exp U(2)f, for all fEC” (Guichardet, 1972; Klauder, 1970).

We now compute some expectations and transition probabilities. First
of all

Il

F(H)hjl"'jr 2 }\"<h"’ em><ep’ hn>A*(em)A(ep )hjl e,

n,m,p

1/2 .
2 Ahyen) e P> B (m+1) /zhjl--»jm+1---jp—1---j,
"y

+ 2 AalCPs € )| 2t
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Hence,

(C(H)h, by, 3=0
unless ji =jy, ..., j, =j, ot j, =j, +1andj, =, — 1 and j; =), forall k#m, p,
and some m, p. In the first case we have the expectation of I'(H) in the
state h e

(CCHDR by )= 2 Nl e )]

h,m
and in the second case we have

<r(H)h ” Jl > EA <hn’em><ep’h >(Jm+1)1/2 )/

If fEL*(R") is an arbitrary unit vector in the domain of I'(H), then the
expectation of I'(H ) in the state f is

<F(H)f’f>: py (f,hjl...,)(hj;...j;,f><F(H)hjl..‘jr,h,;”.,;>
Jlseeor Ji

and the expression can be computed using our previous formulas. In
particular, in the ar-particle state 4., we have

(T(H)hy. by ) =0 2 N Khys e, )2 =n 2N,
k,m k

In the n-particle state A, o (n in the jth place) we have

<F(H)ho---n---o’ h0~--n~-0>:n2}\k|<hk’ ej>|2
k
To find the expectation of I'(H) in the state e ~!/?exp e, notice that

o0
expe,= 3 (n1)?h,,
=0

and hence
(T(H)expey,expe; )= 3 () (T(H )y ouhy. o)

= 2(n!)*‘ngxk|<hk,e1>|2=e§Ak1<hk,e1>i2-
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To find the transition probability [(e *TUDf g}|%, let g, .. =

JJ,h .., be the eigenvectors of I'(H) with corresponding eigenvalues

2\, Jj,- Then

<e—itI‘(H)f’ g>: | 2 {f, gj,"‘j,><gj1"'j,’ g>e-iz2>\,,j,.
FATTERD) jr

Suppose that &; =2, ¢ e, If n=2jj, then
= ®jy . iy
8= LB ® -+ @B )
n! bz :
:[Z!—.-"—]—T} c”./lc21/2...crlfrhno‘uo—{— PR

Then, for example, if 2 j, =n, we have the expectation

—~itT(H) - e i Y e i o A2 1SN
<e hno---o’hno-u0>‘— 2ontt ) eyt e e R
jl ----- jr

= [1"11|2ekm'+ B +lcrllgm”>\r] i
:(2Khjsex>lzeum")n:<e—””€xa€1>n
Moreover,

—iT(H - Y YNedr el
(e expey,expe, )= 2 (il i) left ¢
Jroeendr

Ze~—it2)\kjk

=exp(Z|cy |%e ™ )=exp(e e, e;)
This can also be seen from
(U(1)expe,,expe, )= (expU(1)e,,expe, y=exp{U(t)e,, e, )
In general,

(U(t)expf,expg ) =exp(U(1)f. &)

7. ANTISYMMETRIC HILBERT SPACE

As before V=C’ with standard basis e,...,e,. The antisymmetric
Hilbert space for V is defined by

Aav=cerve(v@v)e -e(Vv@re - @)
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where V appears r times in the last term. The dimension of V®" is
(5 )=r!/ni(n—r)! so the dimension of AVis 3/ _,(;,)=2". We now define a
unitary transformation J,: AV—>C?. Let ey, ey,...,e,7_; be the standard
basis for C%. For n€{0,1,. 2’—1} write n in its binary notation n=
JiJrJs Jx=0o0r 1, and let e, =e; ...;. For example, in C2,e0=e4p, €1 =
€o1» €2 =€19, €3 =€ . For the bas1s elemente @ @e i, {1}
<iy<---<i,, in AV, define

Je(eil@ T @eik):ejl---j,

where j, =1 if i,,=n for some n and j,=0 otherwise. For example, in
C?, J(D=eqy, Je))=e g, J(e;)=¢y, J(e,@)e,)=e,,. Then J,, defined
above, extends to a unitary transformation from AV onto C?.

We define the annihilation operators A(e;), j=1,...,r, on C? by

Aleyde; .., =0 if j, =0, and A(eye; .., =€, . 1. 1f Jp=1. Their
adjomts are the creation operators, A*(ek)e 5, =0 if jr=1, and
A*(ey)e; . 51, 1 j =0. For arbltrarnyC’ we define A(f) Z

(e;, )A(e ) and A*(f) A(f)*—E(f . )A*(e;). These satisfy the usual
antlcommutatlon relations. The operator A(e,) [A(e,)*] has the single
eigenvalue 0 with corresponding eigenvectors e; ...;, where j, =0 (j, =1),
J,=0or 1, n##k.

As before, we define the self-adjoint field operators w( f)=2"12[A(f)
+ A O, W f)=—2"V2%[A(f)—A*(f)]. We also define the jth number
operators N(e;)=A*(e;)A(e;) and the total number operator N(e)=ZN(e;).
Then

Ney)e;,..;, =i,
and
N(e)ej,...,.= (3k;)ey, ..,
As an example, if r=1, we have V'=C and AV=C2, Then A(1)e, =0,
A(D)e, =e,y, A*(1)e, =e,, A*(1)e, =0. Hence,

we[3 2] wels

The field operators become

77(1)22—1/2[A(1)+A*(1)] :2—1/2[(1) é]

p()=—2"2a()-ar ()] =270 ]
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These together with the location observable [§ 9] give essentially, the

Pauli spin matrices.

As in the symmetric case, we define the second quantization of a normal
operator H on V by I'(H)=2A,A4%*(h,)A(h,). Many of the results of the
previous section hold for I'(H) except those involving the exponential
vectors, for which there seems to be no counterpart in the antisymmetric
case. In fact, the expressions are simpler in the antisymmetric case since
Jr=0or 1.

This gives a hierarchy of second quantizations. For example, C1® =4°C,
and L*(R*)=SA%C.
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