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The basic properties of nonrelativistic finite-dimensional quantum mechanics are 
presented. A discrete quantum mechanics is developed. Second quantization, the 
symmetric and antisymmetric Fock spaces are also discussed. 

1. INTRODUCTION 

There are three important reasons for studying finite-dimensional 
quantum mechanics. First, finite-dimensional quantum mechanics ap- 
proximates ordinary quantum mechanics and the approximation gets better 
as the dimension increases. In this way, numerical methods can be utilized 
to an arbitrarily high precision. Second, there appear to be good reasons to 
believe in the existence of a fundamental un i t  of length (Atkinson and 
Halpern, 1967; Gudder, 1968; Heisenberg, 1930). If this turns out to be 
true, then the resulting quantum mechanics will be finite dimensional in the 
bounded case, and discrete in the unbounded case. Third, finite-dimensional 
quantum mechanics may lead to a deeper understanding of conventional 
quantum mechanics. As we shall see, the Hilbert space L2(• 3) of a single 
nonrelativistic particle p is the second quantization of the finite-dimensional 
space C 3. The particle p can then be described in terms of more elementary 
"particles" in C 3. The quantum mechanics on Ls(R 3) can therefore be 
thought of as a finite-dimensional quantum field theory, and its study may 
shed light on the conventional quantum field theory. 

In this paper we present the basic properties of nonrelativistic finite- 
dimensional quantum mechanics. We expect to consider relativistic theory 
and deeper aspects of finite-dimensional quantum mechanics, and quantum 
field theory in later works." 
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2. QUANTUM MECHANICS ON C r 

In the sequel, V=C ~ and e l , . . . ,  e, is the standard basis ej(k)=6jk on 
V. The projection operator Qj onto ej is called the j th  location observable. 
For any fEV,  we have (Qjf)(k)=6}kf(j) and Qjf=f(j)ej. Any real 
function of the Qj's is called a location observable and every location 
observable has the form A = Eg ( j )Q j  = g- Q where g ~ R L For any f E  V, we 
have ( Af)( j )=g(j) f ( j ) .  

Define the finite Fourier transform (Auslander and Tolimieri, 1979) F: 
V ~  V as 

(Ff)(j)=r -'/2 ~ f ( k )e  2~ijk/r 
k = l  

Then F is unitary and 

(F*f ) ( j )=r  -1/2 ~ f (k  )e -2~rijl~/r 
k = l  

The matrix elements of F are Fj.k= (Fek, ej)=r-l/2e2~ijk/r. The operator 
Pj =F*QjF is a projection onto the vector fj =F*ej and is called the j t h  
motion observable. Any function B=Y~g(j)Pj = g . P  of the Pj's is called a 
motion observable. 

The matrix elements of P, are ( Pn)jk = ( P, ek, ej) =r-leZ~i"(k-J)/r. 
Let Q be the location observable defined by (Qf)(j)=jf(j),  Q=Y~jQj. 

Thus, Q represents a location observation for a particle which can be 
located at one of the points 1,2 . . . .  , r. The eigenvectors of Q are ej with 
corresponding eigenvalues j ,  j = 1 . . . . .  r. Let P = F*QF= Y~jPj be the motion 
observable corresponding to Q. The eigenvectors of P are fj =F*ej, with 
corresponding eigenvalues j ,  j = 1,. . . ,  r. 

The motion observable P is the infinitesimal generator of a one- 
parameter unitary group V(a)=ei~e=Eeiajpj. Letting a=27rm/r, mEN, 
we have 

[ ei(Z~rm/r)P ] jk = r - 1 ~ eiZ,~,,n/~e2~in(k-j)/r 
n = l  

: r  -1 ~ e 2~rin(k-j+m)/r: ~ (en)j,k+m:~j,k+m 
n = l  n = l  

(mod r)  in m. Hence, 

[ ei(2*m/r)Pe k] j= ( ei(2"~/')Pe k, ej } =~j, ~ + m 
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and ei(2~rm/r)t'e k =ek+,, (mod r). This is why P is called a motion observa- 
ble; it generates a dynamical group V(a) which moves a particle from 
location k to location k+m (mod r) in time 2rrm/r. It follows that 
[V(2~rrn/r)q(k) =f (k -m) ,  (mod r), for all f E  V. One can also observe the 
motion property of P by viewing the dynamics V(a) in the Heisenberg 
picture. A simple computation shows that V(-2crm/r)QV(2~rm/r)=Q+ 
mI (mod r). 

Since P and Q are hounded observables, the Heisenberg form of the 
commutation relation cannot hold. In order to derive [Q, P] notice that 

Pjk -~ ~ n(Pn)jlc~r -1 ~ ne 2~rin(g-j)/r 
n = l  n = l  

Since 

(QP )j~ = ~ Q+nPnk = ~ n3jnP, k =JPjk 
n n 

and similarly (PQ)jg =kPjk we have 

[Q,P]jk=(j- -k)Pjk:- ( j - -k)r  -I ~, ne2~rin(k-J)/r 
n = l  

A discrete version of the Weyl form of the commutation relations does 
hold. In fact, if sEN, and tER,  we have 

e i (2~r t / r )Q e i (2~rs / r )P  _~_ e i2~r ts / re i (2~rs / r )Pei (2  ~rt/r)Q 

This follows from 

e i (2~r t / r )Q e i (2crs / r )Pen  - - e i ( 2 ~ r t / r ) Q e  - - o i [ 2 ~ r t ( n + s ) / r ] a  
- -  n-}-s - - ~  ~n-}-S 

= e i2~r tS / r e i27r tn / r en+s  = e i2~r tS / re i (2~rs / r )Pe i2rr tn / ren  

= ei2~ts/r e i(2rs//r)P e i(2 ~rt/r)Qen 

It should be mentioned that Q need not bean  actual position observa- 
b l e - i t  could be a spin observable or any other observable with a finite 
number of values. Also, although the usual Heisenberg uncertainty principle 
does not hold in finite dimensions, it does hold in the following weaker 
sense. Suppose the system is in a movement state fj--=-F*ej. Then P has an 
exact value j and dispersion zero. The probability that Q has value k 
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becomes 

(Qk fj, ~ } =  I(ek, fj)l 2 =l(Fek, ej>l = = =r-1 

Since this holds for all k =  1,. . . ,  r, Q has uniform distribution. Thus, Q is 
completely undetermined in this state and has maximal dispersion. Of 
course, the analogous result also holds for location states. 

The above theory converges to the usual one-degree of freedom quan- 
tum mechanics in the following sense. Let H=L2[0 ,  1] and let q and p be the 
usual position and momentum operators. Then there exist subspaces H r of 
dimension r such that H r ~ H  in that for every f E H  there exists a sequence 
s ~ Hr  such that f ~ f  and for every such sequence fr, t h e  sequence of 
location observables qr satisfies q ~ f ~ q f  and for every f E D ( p ) ,  the se- 
quence of motion observables pr satisfies P~fr--'Pf" TO see this, let @r = 
(0, r - l , 2 r  -~ . . . . .  1} be a partition of [0,1] and let H r be the set of step 
functions which are constant on the intervals of e2~. Then H~ is an r- 
dimesnional subspace of H and H r is isomorphic to C r. Now define qr: 
H ~ H ~  by ( q f f ) ( x ) = m r - l f ( x )  for ( m - 1 ) r - l < x < ~ m r  -1. Then qr is 
isomorphic to the location observable considered above and q~ -~ q. Indeed, 
suppose fr UHr and fr--'f" We can assume f is bounded and I Then 

II q r L - q f  II ~< [I qrfr--qL II + II qL--qf  II 

<llqrs + llqll Ilfr--f il 

Then the last term approaches 0 as r ~  oc and 

2 1 Ilqff~-qs = s  [qrf~-qs 

= ~ fmr-' .irnr_lf~(x)_xfr(x)lZd x 
m = 1 ~ ( m - -  l ) r - '  

r -1  

~ M  ~ fmr  lmr-l--x[ 2dx<~M i r-3<'Mr-t~O 
m = l  a(m--1) r-t m = l  

as r ~  

Now define Pr: Hr~Hr by pr=F*q,F. Then for fn=X[(,_ 1),-1, F/r-l] we have 
e i(2,,,/r)prr =r  (rood r), s = 1,2,.. r. Hence, for any f E H  r we have Jn Jn+s " 

[ei(2~s/r)Prf](x)=[ei(2~'s/r)pr~Cnfn](X): ~r 

= ~C,  fn(x--sr -1) = f (x - - s r  -1) 
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Thus, if fr--,f, we have ei(2'~Sr/r)P@~ei2"Pf, where sJr~s[O, l]. The above 
considerations can be extended to L2[0, oo], and by redefining F they can 
also be extended to L2(R). Furthermore, we can extend these results to 
L 2 ( ~ n ) .  

We close this section by deriving explicit formulas for the matrix 
elements of P which will be convenient for later examples. Let Q = E jQj be 
a location observable, and P =  2 jPj the corresponding motion observable. 
By differentiating the equation 

xn=(xr+l - -X) (X- -1)  -1 
n=l  

we obtain 

nxn:[rxr+2 (r+I)Xr+,+X](X__I) 2 
n=l  

Hence, by some algebraic manipulation we obtain 

for j v a k and 

Pjj=r-' i n=(r+l)/2 
n=l  

This gives the following formula for the matrix elements of the commutator; 

[ [Q,p]j : 1+ r , j ~ k  

O, j=k 

3. DYNAMICS 

In this section we consider dynamics on V = C  r. A vector a =  
(a 1 . . . . .  at)  E R r specifies a location observable a- Q = Y~ a,  Q,, and a motion 
observable a'P=YanPn. We call a C R  r the basic location vector for the 
system. The basic location vector also specifies a free Hamiltonian or flee 
energy observable H o = 2 - 1 ( a - P )  2 = 2 - 1 ~  2 a .  Pn. The matrix elements of H 0 
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become 

1 ~ a2e2~ri(k_j)/r (H0) jk=2- '  i aZ(P,)jk=~r 
n = l  n = l  

For example, let a,=n-1, n = l , . . . , r .  This would represent a particle 
located at one of the points 0, 1,..., r -  1. Then using the equation 

i (n--l) 2x'-r2xr+l (2rxZ+l)x2 x~+Z(x+ 1) 
,=1 x--1 ( x - - l )  2 + ( x - - l )  3 

we obtain 

1 i (n-- 1)2e 2~ri(k-j)/r ( Ho ) jk= -~r 
n = l  

icot~r(k-j)] 1 1 1 cot2~r(k- j )  ~_ 
= ~  r - - ~ + ~  r r 

if j=/= k, and 

(Ho)jj=_~rl ~ (n-- 1) 2 -  ( r -  1)(2r-12 !) 
n = l  

Let us now return to a general basic location vector a ER r. The 
dynamics is given by the one-parameter unitary group 

U( t ) =e-ittt~ = i e-ita2"/2en, 
n = l  

t ~ R  

If the system is initially in the state e k (the particle is located at the point 
k -  1), then the probability that the system will be in the state ej (the particle 
is located at the point j -  1) at time t is 

@kj( t ) = I( e-itHoek, ey )l 2= I (e-imo)jkl 2. 

Now 

n = l  n = l  
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Hence, 

(e - i t H o ' ~  2 =  F ]jk -2 ~ expi[ t 2 n,m=l -2(am-a~)+ 2--f--f (n-m)(k-J)]  

re>n=1 c~ -2(am--a~)+~-(n--m)(k--J) 

In particular, we have 

m>n=lCOS'2 (am -a2) 

Important information about the system is given by the average loca- 
tion at time t given the initial state e k. This is given by the following 
formula: 

' ) (O)k( t ) = (OU( t )ek, U( t )ek) = )ee, U( t )e k 
J 

= ~ aj((U(t)ek,ej)ej,U(t)ee) 
j = l  

= ~ aj(U(t)ek, ej)(ej, U(t)ek) 
j=l 

: ~ aj[(U(t)ek,ej)[ 2 :  ~ ajlU(t)j~l a 
j=l j=l 

The matrix elements of [U(t)jkl 2 =[(e-"n0)jk[2 can now be read off from 
the previous formulas. 

So far we have worked with location states since they have important 
physical significance. However, we can also consider other pure states. Let 
f ~  V represent an arbitrary pure state. In the motion representation, we 
have 

e-itHof=e -itH~ ~ (f ,  fn)fn ~ ~ (f,  fn)e-a"~/2f n 
n = l  n = l  

If g E V represents another pure state, the transition probability at time t 
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becomes 

m =  

= ~ (f, fn)(fm,g}e-itaZ"/28nm 2 
n , m = l  

= .:t ~ (f '  f,,}(L, g} e-it"~"/z 2 

The transition probability at time t in the location representation is 

I(e itZ-lof, g}[2= e -itH~ f(j)ej, k=l ~ g(k)ek }2 

= j,k=l ~ f(J)g(k)(e"U~ 

Now suppose the system finds itself in a potential V= b- Q, b E R r, and 
the free energy has the general form H 0 = 2 - l ( a . P )  2. The total energy 
observable becomes 

- -  --1 2 H=Ho+V=2-'(a.P)Z+b.Q-2 •a.P.+•b.Q. 

The matrix elements of H are 

r 
H -- 1 E a2n eE=i<k-j)/r+bj~jk 

jk-- 2r n = l  

In particular, the average energy in the state ej becomes 

1 ~  2+bj (H)j=(Hej,ej}=Hjj= ~r a. 
n = l  

In general, the eigenvalues and eigenvectors of H are extremely difficult to 
calculate and an explicit formula for the dynamics e -itn cannot be given. In 
the next section we shall give some specific low-dimension examples that 
can be solved exactly. If the eigenvalues X, and corresponding eigenvectors 
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~ ,  n= 1,..., r, are known, then the matrix elements of U(t)=e -"H become 

U(t)fl,=/e-~tI-te e \ :  ~ -" \ k, ; /  (e j , ,~p.)+. ,e ; )e  ,,x. 
n : l  

Knowing these we can then compute the transition probability 

 kj(t):lU(t)j l 2 and <Q)k(t) :   ajlU(t)j l 2 
j= l  

Although the eigenvalues and eigenvectors of H = H  o + V cannot be 
found exactly in general, approximations can be found using perturbation 
theory. Let H=Ho+eV , where Ho=2-1(a.P) 2 and V=b.Q. Then for e 
sufficiently small, the eigenvalues ?~.(e) and corresponding eigenvectorsf~(e) 
of H are analytic (Kato, 1966) and we have 

~n(e)'~'~kn "~-E~kn, 1 -~-e2~kn,2 -~- . . .  

f . ( e ) : f .  +ef.,a + eZf.,2 + . . -  

for n =  1 .. . .  , r. Clearly, ~ . ( 0 ) = ~ .  =a2/2, the nth eigenvalue of H 0 and 
fn(O) = fn = F* e., the corresponding eigenvector. Since 

(H  o +eV) ( f .  +efn,1 + eEf.,2 + . . - )  : (?~. +e?~., l + - - - ) ( f .  +el.,, + . . .  ) 

comparing coefficients of e gives 

Hof.,l + Vfn:?~.fn,l + X., l f .  

Taking inner products with f. gives 

( f.,1, HoL) + (Vf., f . )=a.< f.,], f . )  + X.,, 

Since Hof . = X. fn we have 

X.,]=(Vfn, f . ) : r - l  ~ b j = r - ~ t r V  

Taking inner products with fro, m :~ n, gives 

~m( fn,,, fro) + (Vfn, fro) =?~n( fn,a, f~) 
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Hence ,  

and 
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--1 <L,,,L)=(X.-Xm) <VU.,L) 
--1 = (Xn --~km) r -12bjeZ~r i j (m-n) / r  

J 

f.,,= Y~ <L,,,fm)f.. 
rn~.n 

is solved explicitly. Higher-order perturbation terms can be computed but 
they become more complicated. 

4. EXAMPLES 

Let V=C 2 and let a=(0 ,1)ER 2 be the basic location vector. The 
location observable is Q=a. Q=0Q1 + 1Q2 = Q2- The finite Fourier trans- 
form is 

-1 1] 

and the first and second motion observables become 

P1 _ 2 _  l 2_ l , P2 = 2 _  1 2 _  1 

The motion observable is P=a.P=OPI+IP2=P2 and the free energy 
observable is H 0 =2-1P 2 =2-1(a .P)  2 =2-1Pz. The dynamical group now 
has the form 

U(t )=e- i tn~176 1 +e-it /2p2=P 1 +e-it/2p 2 

= l [  l+e-i t /2 - - l+e-a /2]  
2 -- 1 +e-it~2 1 +e-it/2J 

The transition probability ~kj(t) from the location state e~ to the location 
state ej after time t becomes 

@~j( t )=lU(t ) jk l  ~ = k ( 1 + cos[�89 + ~ ( k - j ) ]  ). 
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In particular, ~j(t) = �89 +cos�89 Thus, if a particle is initially at location 
0, then it will oscillate back and forth between 0 and 1 with period 4z~. This 
becomes particularly clear by noting that 

2 
1 t (QYI(t) : ~ ajlU(t)j,~i2=lle-iW2--11z=-~(1--cos~). 

j = l  

Now suppose the system is in a potential V=b.Q, b=(bl, b2)~N 2. 
The total energy becomes 

H=Ho+V=2_iPz+blQt+b2Q2=l[l+b, 1 ] 
1 1 + b  2 " 

The eigenvalues of H are 

~,~: ~-, [~+,~, +,,~ + (/+ <b,-b~ ~)'Z ~} 

Letting c :  b 2 -b~, the corresponding normalized eigenvectors are 

+, :~,(,,~-,[c- ~4+~,~]) 

where N~, N 2 are the normalization constants 

Nl:2'/2(4+c[c-(4+c2)]i/z)-l/2 

The matrix elements of U(t)=e-ira are 

U( t )jk = (e~, @1)(1~1, ej)e-,,x, + (e~, ~2)(~2, ej)e-i,x2 

Now suppose the system represents a particle whose admissible loca- 
tions are 0 and 1. If the particle is initially at the point O, then the 
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probability the particle will be at the point 0 at time t is 

~,,(t)=lU(t), ,[ 2 =lU2e  -'ix, +U2e-J,x~l 2 

=N 4 + N 4 + 2N?Nz2cOs(A2-~l)t 

= [ 4 + c 2 ] - 1 1 2 + c  2 +2cos4-1(4+c2//2t] 

Notice that 

[ 4 + c  2 ]-1c2 ~<Pl l ( t )~  < 1 

and @ll(t) oscillates between these two values. As I b2 - b l l ~  0 then @ll(t) 
approaches the free case and as [b 2 - b l l ~  oo, @11(t) approaches 1 for all t. 
Thus, as the potential difference gets large, the particle tends to remain at 
its initial position. If the particle is initially at 0, the average position of the 
particle is 

(Q)l( t )=lU( t )zllZ= l--lU( t )lllZ= l--O)ll( t ) 

It follows that on the average, the particle remains between 0 and 4[4 + c 2 ] - 
Again, as the potential difference I b2-bl l  gets large, the particle remains 
near its initial position on the average. 

The physical significance of the energy eigenstates qq, ~2 in terms of the 
particle position may be seen as follows. The average position in the state qq 
is 

Similarly, 

<Q>~, = (Q~I ,  ~1> = <Q2~l, +1> = I(+1, e2>[ 2 

=�88 2 

=[2+c2-c(4+cZ)' /2][4+c2-c(4+c2)l/2]-x 

[4+c  -1 

For c=0,  we get the free case (Q)*I _ 1 = ( Q > ~ 2 - ~ -  For cv~0, we have 
(Q>*l <(Q>+2" Thus, in the lower-energy state qq, the particle is closer to 0 
than in the higher-energy state qJ2- Also, notice that <Q>~I + <Q>r = 1 and 
<Q>,, ~0 ,  <Q>~2~ 1 as c--, oo. 
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For our next example, we consider V=  C 4 and let a = ( -  3, - 1,3, 1) C R 4 
be the basic location vector. We shall apply formulas in Sections 2 and 3 to 
compute various observables and quantities. The location observable Q =  
a .  Q =  Y~a.Q n becomes 

- 3  0 0 0 
Q =  0 --1 0 0 

0 0 3 0 
0 0 0 1 

The j -mot ion observables, j = 1,2, 3, 4 are 

[1 i l  I 1 - i  1 i - (  1 
P ' = - 4  - 1  - i  1 ' P 2 = - 4  

i - 1  - i  

i1 i 1 i ]  1 1 i 1 - - i  ~ = ~  
Pa 7 = , ~  --1 i 1 

- - i  --1 i 

1 --1 
- 1  1 

1 - 1  
- 1  1 

1 1 1 
1 1 1 
1 1 1 
1 1 1 

1 
- 1  

1 
- 1  

- 1  
1 

- 1  
1 

The free energy observable H o = �89 1 + 1P 2 + �89 3 + �89 is 

1 
5 O 4  
0 5 0 - 

- 4  0 5 
0 - 4  0 

The free dynamical group U( t ) = e -  itHo = e - it 9/2P1 + e -  i t / 2p  2 -~- e -  i t 9 / 2 f  3 -~ 

e - i t / 2 e  4 becomes 

[ e-it9/2+e -it/2 0 
U (  t ) = 0 e -  it 9/2 ..~ e-it/2 

-- e-i9/2 _~ e-ill2 0 
0 --  e -  it9/2 + e -  it~2 

e-it9/2 + e-it/2 
0 

e-it9/2 + e-it/2 
0 

0 
- e - it9/2 .~_ e -  it/2 

0 
e -  it9/2 .~_ e - it/2 
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The transition probabilities become 

@jj(t)=2-'(l+cos4~rt), ~j+,(t)=@j.+u(t)=O 

@jj+ 2 ( t ) =  @j+ 2, j ( t )  = 2-1 (1 - cos 4~r t ) 

The average location is(Q)k(t)=a~cos4~rt. 
Now suppose the system experiences a potential V=b.Q, b= 

2-1(bl, b2, b3, b4)ER 4. The total energy is H=H o + V. The energy eigen- 
values become 

10+b I + b  3 +[(bl-b,)2+64] '/2 
Xl= 4 

10+b 1 +b3-[(bl-b3)2+64] 1/2 
~k2= 4 

lO-'~- b2 --~- b4 +[(b2-ba)Z+64] 1/2 
~3=  4 

lO+b 2 +b4-[(b2-b4)eq-64] 1/2 
~k4= 4 

and the corresponding (unnormalized) eigenvectors are 

,/,1 = 

1 
0 

5+b l  -? '1 
4 
0 

1 
0 

q~2= 5 + b l - X 2  
4 
0 

0 
1 
0 

5 + b  2 - X  3 
, ~ 4  = 

0 
1 
0 

5 + b  2 -2~4 

One can now compute ~.k(t) and (O)k(t) using previous formulas. 
The reason that everything was easy to compute in the last example was 

because of the symmetry of the basic location vector a E R 4. This resulted in 
degeneracies in H 0 and the system could be described by two uncoupled 
two-dimensional parts. Suppose now we have an unsymmetrical basic 
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location vector such as a = (0, 1,2, 3) E R 4. Then the situation is much more 
complicated. For example, 

6 
1 2 + 2 i  

P = 4  2 

2 - 2 i  

and 

2--2i 2 2-~2i] 
6 2--2i 

2+2i  6 2 2i!  
2 2+2 i  6 J 

U( t ) = P, + e-iW2p 2 + e-i2 tP3 + e-i'9/2p 4 

The diagonal transition probabilities become 

~j( t )= ~--~[4+2(cos2 +cos2t+cos9t+cos3t+cos4t+cos5t)] 

The particle now experiences a complicated periodic motion. 

5. DISCRETE QUANTUM MECHANICS 

We have shown earlier that as the dimension approaches infinity, the 
finite-dimensional quantum mechanics approaches the usual quantum 
mechanics. However, we could also jump immediately to an infinite- 
dimensional discrete quantum mechanics. Let I =  {0,-+ 1, -+ 2 .... } be the set 
of integers and let V be the Hilbert space 12(i)= {f: I--, C:~[ f(n)[ 2<  oe}. 
The natural location observable is the operator Q on V with domain 
D(Q)={fEV:nf(n)EV} defined by (Qf)(n)=nf(n) for all fED(Q). 
Since we have no Fourier transform on V, it is not clear how the motion 
observable P should be defined. However, it is reasonable to assume from 
our previous work that (eimef)(n)=f(n-m), n, m El. 

It turns out to be more convenient to work in the Hilbert space 
L2[0,2~r] using the unitary transformation T: V-~L2[0, 2r given by 

(Tf )(x )=(27r ) - ' / z ~ f ( n  )e inx 

The transformed location observable (~ becomes 

(m )(x)=(TOT-lf )(x)=[T(n (f, (2r:)-l/2ei"x))](x) 
�9 " = i d ( 2 ~ - ) - ' ~  ( i , e ' " X ) e  '~ =(27r )- '  ~ n( f 'e")e '"X - -~x 

d 
= -i-~xf(X ) 
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To be precise, D(Q) is the set of absolutely continuous functions f on [0, 2 ~r] 
such that f 'EL2[0,2~r] and f(0)=f(2~r). For fED(O_), Oj=--if '. The 
transformed motion observable/~ satisfies 

( dm~f )(x )=(TeimPr-7 ) (x  )----( T( f ,  (2~r)-~/2e'(~-m)x))(x ) 

= (2~r)- '  ~ (f, ei(n-m)x)einx=eimxf(x) 

We can therefore define (l~f)(x)=xf(x) for all fEL2[0,2~r]. 
We now drop the caret on Q and P and work exclusively on L2[0,2~r]. 

The location eigenvectors are the orthonormal basis +j =(2~r)- le  ijx. The 
free energy observable is H 0 = 2-1p2 _-2-1x2 and the free dynamical group 
is U(t)=e -ix2t/2. The transition probability from the j t h  to kth location 
state is 

6~jk(t)=(gtff)-I fexp{--i[x(2-1t)l/2+(k--j)(2t)-l/2] 2} dx 2 

For t v ~ 0 this can be written as 

6~jk(/) = ( 2 ~ ) - 1  fexp{--i[x(g-lt)l/2-}-(k--j)(at)-l/2]2}dx 2 

This gives a Fresnel integral whose values may be obtained from tables. 
The average location given the initial state +j is 

( Q ) j ( t )  = (2~r)- '  (QU(t )qg ,  q9 ) 

=(2rr )-' (--i ff-ff-~e-iX2t/2+iJX, e-i~2t/2+ij x ) 

=(2rr )-l fo2~ (-xt+j ) dx= -tcr +j 

This represents a particle moving at constant velocity -~r. 
Suppose we have a potential -aQj, a>0 ,  in location space. This 

corresponds to the operator V=-aQj on L2[0,2~r], where Q1 is the 
projection onto the vector +j. The total energy observable is H =  x2/2- aQj. 
Solving the eigenvalue equation H~k---E q~ gives 

qJ=a(~p, ~j)( x2/2--E)-' qJj 
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Taking the inner product with q~j gives 

a - I  =,B- -- 1 fO2~(X2 -2E) - ldx  

It follows that E < 0  and that E is the solution of the equation a - x =  
7r-l(-2E)-l/2tan-127r(-2E) -1/2. Thus H has the single eigenvalue E 
and the rest of its spectrum is continuous. 

As another example, suppose we have a potential V= Q. Then H--  
xZ/4-id~dx and the eigenvalue problem H~=E~ has solutions +=  
ce-t(Ex-x/3). To satisfy the periodic condition for D(Q) we must have 
~b(0)=~p(2rr). This implies that E must have the form En =n+(2~r)2/3, 
n=0,-+ 1,--+2,.... The corresponding normalized eigenvectors are %--  
(2~r)-tei(E,x-x~/3). The average location in the energy eigenstate ~, is 

-- I P27r+ 
(Q) ,=(Q+, ,q~ , )=(2r r )  Jo tEn-xZ)dx=n 

6. SYMMETRIC HILBERT SPACE 

In this section and the following section we shall describe finite- 
dimensional nonrelativistic quantum field theories. In particular, we shall 
consider the symmetric Hilbert space for V= C r in the present section and 
the antisymmetric Hilbert space for V in the next section. 

Let V=C ~ and SV=C@V@(V|174174 be the 
symmetric Hilbert space for V, where | denotes the symmetric tensor 
product. Now SV is unitarily equivalent to L2(~ r) in a natural way. Indeed, 
let el, . . . ,  e r be the standard basis for C ~ and let hn ~LZ(R) be the Hermite 
function 

n=0,  1 . . . . .  Then h, is a orthonormal basis for L2(R) and 

h+, ..... +,(x, . . . .  , x r ) = h j l ( x , ) . . . h j r ( x r )  

Jl . . . . .  fi =0, 1,..., is an orthonormal basis for L2(•r). On the orthonormal 
basis e l ' |  |  define 

are( e~' O " " "  Oe / "  )--h, . . . , ,  (x , , . . . ,  X r ) 
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Jl,-.. ,  Jr =0, 1 . . . . .  Extending Je by linearity and closure gives a unitary 
operator Je: SV--'L2(Rr) �9 In this way, L2(R r) may be thought of as the 
symmetric Hilbert space for V. In particular, the pure states for the usual 
nonrelativistic quantum mechanics on Lz(R 3) can be written as superposi- 
tions of states for three-dimensional "particles" in C 3 

Define the annihilation operators A(ej) on L2(R r) by A(ej):  2- l/2(xj 
+O/Oxj), j=l , . . . , r .  Their adjoints are the creation operators A*(ej)= 
2- l/2(xj -- O/Oxj), j = 1 ..... r. These operators satisfy 

A( el, )hA " A =J~/2hj~ - jk -  l .. .j~ 

A*(ek)hj~...A = (Jk + 1)l//2hjl"'jk +l'''jr 

and the commutation relations [ A( ej), A( e k)]=[ A*( ej ) , A*( e k)]=O,[ A( ej) , 
A*(ek)]=6jk. 

For arbitrary fEC r, we define A(f)=E(ej,  f)A(ej) and A * ( f ) =  
A( f )* = Y~( f, ej)A*( ej). These operators satisfy 

A( af  + flg )=~A( f ) + fiA( g ) 

A*( af  + flg )=aA*( f ) + flA*( g ) 

and the commutation relations [A(f ) ,  A(g)]=[A*(f),  A*(g) ]=0 ,  
[A(f) ,  A*(g)]= (g, f )  for all f,  gECr,  a, f lEC. In terms of differential 
operators we can write 

A ( f  )=2-1/2~fj(  xj + ~-~jj )=2-1/2(f.x+f. v )  

x 0 A*( f )=2-1/2~f j (  j - ~xj ) =2-1 /2( f .x - - f -  V)  

We also define the self-adjoint field operators ,r(f),  ~p(f) by 

~( f ) :2- ' /2[  A( f )+A*( f )] : R e f . x - i I m f - V  

~b(f) : - - i2 - ' /2[A( f ) -A*( f ) ]  = - I m f - x - i R e f .  V 

For f E  C r a real vector, we have ~r(f) = f. x and ~ ( f )  = - if- V. In particu- 
lar, ~r(ej)=xj and qJ(ej)=-iO/8xj, the usual position and momentum 
operators. Notice that for f restricted to R r, f-~(zr(f),~(f)) gives a 
quantum field on L2(R r) in the following sense. The operators ~r(f), ~b(f), 
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f E R  ~, are essentially self-adjoint on a common dense, invariant domain 
with cyclic vector h0... 0. The maps f ~ r ( f ) ,  f ~ ( f )  are linear and 
continuous in the strong operator topology. Moreover, 7r and ~ are univer- 
sally convariant. That is, if G is any group of unitary operators on R ~, then 
there exists a unitary representation g--, U s of G on L2(R r) such that 
Ugho...o =ho---0 and Ug~(f)Ug -1 =qr(gf), Ugtp(f)Ug -1 = ~ ( g f ) ,  for all g E  
G, f ~ R  r. Indeed, define Ug on Lz(R r) by (Ugh)(x)=h(g-lx). It is easy to 
check that g-o Ug is a unitary representation. Also, 

(Vgho... 0 )(x)=ho...o(g-lx)=qr-r/4e -<g-Ix'g-ix)~2 

=qr -~/4e - -  < x , x ) / 2  = h o .  .o(X ) 

and 

= 

= 

We also define the j t h  number operators 

N(ej)=A*(ej)A(ej)=2 =' ---~x] + X 2 - I  

j =  1,.. . ,  r. These operators satisfy 

N( e k )hj, ...jr=j~hj~ ...jr 

so the eigenvectors of N(e~) are the basis vectors hi,.. "Jr and the eigenvalues 
are the nonnegative integers. 

The total number operator is N(e)  -- EN(e k ) and satisfies 

N( e )hA...jr = ( ~ kj )hA.. "Jr 

The eigenvectors of N(e) are the basis vectors h j,..-J2 and the eigenvalues 
are the nonnegative integers. All of these are multiple eigenvalues except 0. 
The differential operator for N(e)  is 

N ( e ) = 2  -1 - ~] ~--~+ ~ x ] - r I  
Ox) 
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We now find the eigenvectors of the annihilation operators A(ej). Suppose 
gEL2(R r) and A(e,)g=Xg, ?~EC. Suppose g has the form g(x, , . . . ,xr)= 
u(x,)v(x 2 ..... xr). Then 

du 
dx I = (2-1/2 - Xl )U( Xl ) 

Solving this differential equation gives 

g(Xl )=ce21/Z?~xle --x2/2 

and hence 

g (  X 1 . . . . .  Xr )=Ce21/2XX,e-x~ /21)( x 2 . . . . .  Xr ) .  

Thus A(el) has a dense set of eigenvectors in L2(N r) and every X ~C is an 
eigenvalue. Hence, a set of simultaneous eigenvectors for A(el) ..... A(G ) 
with eigenvalues X,,..., ?t~ EC, respectively, is 

~'-r/4exp(-- �89 2)k 2 )exp(221/z?tjxj )exp(-- 2 4 / 2 )  
B 

We denote this function by exp(YAjej), and if f=]~Xjej, simply by expf. 
The vector expf  represents the pure state in which there are an infinite 
number of "elementary" systems all in the state f E  12 ~. In fact, it is not hard 
to show that 

j e - l ( e x p f ) = ( 1 , f , ,  f |  f |174  ) 
(2!)1/2, (3!),/2 .... 

A simple calculation shows that 

exp f =  exp(�89 2 ( f ,  es }2 )ho.  .o( x , -  2'/2( f ,  e,) ..... x~ -  2'/2( f ,  G) ) 

In particular, exp0=h0 . .o ,  and exp ej =e'/2ho...0(Xl,..., Xj --21/2 . . . . .  Xr). 
If one tries to solve the eigenvalue equation A*(el)g=?tg, ?t EC, for the 

creation operator A*(e,), then the only solutions are of the form 

g(Xl," ' ,Xr)  =-ce-21/2xlex~/2vEx~, 2 , ' ' "  Xr) 

Since g ~L2(R r), the creation operators have no eigenvalues. 
It is interesting to note that we have shown that L2(R r) is the second 

quantization of G r. The finite-dimensional Hilbert space 

[L2(Rr)] n=sp(hk . . . j  : j . +  " " + j r = n }  
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represents the space of n-particle states and 
oo 

The operators A*(ek)A(et) leave the subspaces [LZ(R~)]~ invariant and 

A*( ek )A( e,)hj, .j~-- ( Jk + ' ~'/2 ;t/z~' �9 . .  x ] J l  " i t  "" "Jk + 1 " �9 "Jl - -  1 -"  "Jr 

for k ~ l  [A*(ek)A(ek)=N(ek)]. 
We now consider second quantization of operators. Let H: V~ V be a 

normal linear operator with normalized eigenvectors h~,..., hr and corre- 
sponding eigenvalues ~ , . . . ,  ~ .  The second quantization of H is the opera- 
tor F(H) on L2(R ~) defined by F( H)= YA,A*( hn)A( h,). In terms of the 
location eigenvectors e ~ . . . . .  e~ this becomes 

F(H) = E X.<h,,,ej>(e1,,h~)A*(ej)A(ek) 
n , j , k  

The (unbounded) normal operator I '(H) has a complete set of eigenvectors 
JeJh- 1hi, " "Jr and corresponding eigenvalues Y, A.L, L E (0, 1, 2 .... ]. In par- 
ticular, we see that r(Q.)=A*(e.)A(e.)=N(e.)  and F(I)=Y~A*(e.)A(e.) 
= N(e). Moreover, 

r(e,)= ! X e2~i"(k-J)/~A*(ej)A(e~) 
r j ,  k 

Now let U(t)=e -itn be a dynamical group on V. The corresponding 
dynamical group on L2(R r) is defined as U(t)=e -itr(m. It is well known 
that 0(t)exp f-- exp U(t)f, for all f E  C r (Guichardet, 1972; Klauder, 1970). 

We now compute some expectations and transition probabilities. First 
of all 

r(H)hj,...jr= Y, X.<h.,em)(ep, h.>A*(e,.)A(ep)hj,...j. 
n , r n , p  

E hn(h~,e,n)<ep, hn)(Jm +l)l/2J~/2h], "Jm+' ..j~-I ...g, 
n , m , p  

m ~ p  

+ E X~l<h~,em>12j~hj,...j~ 
n ~ m  
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Hence, 

( r (n )h j , . . . j r ,  hi1 .... J r ' )=0 

unlessj{ =Jl,.-., s =Jr 0rjm =J'~ + 1 andjp =jp -- 1 andj~ =Jk for all k=/=m, p, 
and some m, p. In the first case we have the expectation of F(H)  in the 
state hj~.. 4? 

(F(H)hjt...jr, hj,...jr)= ~ X,Jm[(h,,e~)[ 2 
?l~ m 

and in the second case we have 

( F ( H ) h k  ...j; hj~...j; } = E 2%(h,,, em)(ep, h,,}(jm + 1)l/2jy 2 
n 

If f~L2(R r) is an arbitrary unit vector in the domain of F(H), then the 
expectation of F(H)  in the state f is 

E 
Jl . . . . .  Z 
j~ . . . . .  j [  

( f , h j,...jr)(hj[.. fr' f )  ( F( H )hjl -..Jr, hj~...j; ) 

and the expression can be computed using our previous formulas. In 
particular, in the nr-particle state h , . . . ,  we have 

( F ( H ) h n . . . n , h n . . . n )  = n  ~ X~l(hk,e,,,)[2=nEX~ 
k,m k 

In the n-particle state ho...n...o (n in thej th place) we have 

(r(H)ho. . .n---o,  ho...,-..o ) =n  E X~ [(h~, ej)[ 2 
k 

To find the expectation of I ' (H) in the state e-I /2exp e 1 notice that 

expe l=  ~ (n!)-l/2h,o...o 
n = 0  

and hence 

(F(H)expel,expe j )=  ~(n! )  -l (F(H)h.. . .o,h. . . .  o) 
n 

-= E(nl )  lnEXkl(h~,el>12=eEXkl(hk, e~>]2 
n k k 
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To find the transition probability I ( e - i t r ( H ) f , g > l  2, let gy,. . .y= 
YeJh-ihY,  " "Y, be the eigenvectors of F (H)  with corresponding eigenvalues 
Y~ X,j , .  Then 

<e-itr(mf, g)= E <f, gy.--y,)<gy,-..y; g> e-itxx"y" 
Jl . . . . .  Jr 

Suppose that hy = ]~k cjkek" If n = Y'Jk, then 

-sth|174 g J l ' " J , - -  e~, 1 k2.) 

- - [ j l ! - ~ ! j r ! }  

1/2 
CllJlC21J2 " " " C r / r h n o . . . o  + " ' "  

Then, for example, if ]~j, = n, we have the expectation 

( e - " r ( " )h ,o . . . o ,h ,o . . . o )  = ~. n ! ( j l ! ' "  - '  /, " j r t )  ICl  " " " ~ / q = e  - ' ' ~ " ~  

J~ ..... Jr 

= [ I ~ , l I = e - " ~ , +  � 9  +[G,12--i'Xr] " 

----(~[<hy,e,)[2e - "XJ ) "=<e - "%, ,e , ) "  
Moreover, 

<e-"V(H)expel,exp e, }= Y, (J l !  "" "J , ! ) - ' lc { i  " ' ' c / i l  =e-''z~*j* 
j~ ..... j, 

=exp(YlGll2e -"xk ) = e x p < e - i t H e l , e l >  

This can also be seen from 

< 0 ( t  )exp el ,ex p e 1 ) : <exp U(t )e , ,exp e 1 ) =exp < U ( t ) e i ,  e I ) 

In general, 

< u(t )exp/, exp g > : exp < V(, )f, g > 

7. ANTISYMMETRIC H1LBERT SPACE 

As before V = C  r with standard basis e l , . . . ,G.  The antisymmetric 
Hilbert space for V is defined by 

AV:CeV.(v| ...e(VQVQ ...QV) 
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where V appears  r t imes in the last term. The  dimension of V| is 
(~n) = r ! /n  !(n -- r)! SO the dimension of A V is Yf,=l ~, [~ ) = 2 r. We now define a 
uni tary  t rans format ion  Je : A V ~  C 2r. Let  eo, e 1 . . . . .  ezr -  1 be the s tandard  
basis  for C 2r. For  n E ( 0 , 1 , . . . , 2 " - l )  write n in its b inary  nota t ion  n =  
JlJz '"  "L, Jk = 0  or 1, and let e ,  = e j , . . . j ;  For  example,  in C 2, e 0 =eoo,  el = 
eol , e 2 = e l o  , e 3 =-ell.  For  the basis e lement  ei~(~ ) . . .  ( ~ e i ;  i n ~ ( 1  . . . . .  r ) ,  i 1 
<i2 < " " . <ik,  in AV,  define 

J~( e,, ( ~  . . . (~ei~ )=ej ,  .. jr 

where j ,  = 1 if i m = n  for  some n and Jn = 0  otherwise. For  example,  in 
(3 2, Je(1)=eoo, Je( e l )=elo ,  Je( e2)=e01, Je(el (~)e2)=el l .  Then  Je, defined 
above,  extends to a uni tary  t ransformat ion  f rom A V onto  C 2r 

We define the annihilation operators A(ej) ,  j = l  . . . . .  r, on C 2r by  
A(ek)ejl...j=O if j k = 0 ,  and A(ek)e j l . . . j=e j , . . . j , _ l . . . j r  if j k = l .  Their  
adjoints are the creation operators, A*(ek)ej , . . . j r=O if j k = l ,  and 
A*(e k)ej,.. .Jr = e j . .  Jk + 1...Jr i f jk  = 0. For  arbi t rary  f ~  C r we define A ( f )  = E 
(ej ,  f } A ( e j )  and A * ( f ) = A ( f ) * = Z ( f ,  ej)A*(ej) .  These satisfy the usual 
an t i commuta t ion  relations. The  opera tor  A(ek)  [A(ek)* ] has the single 
eigenvalue 0 with corresponding eigenvectors ej, .. 4; where Jk = 0  (Jk = 1), 
Jn = 0  or 1, nV=k. 

As before,  we define the self-adjointfieM operators 7 r ( f ) - - 2  l / 2 [ A ( f )  
+ A * ( f ) ] , ~ ( f ) = - 2 - W 2 i [ A ( f ) - A * ( f ) ] .  We also define the j t h  number 
operators N( e j )=A*(  ej)A( ej) and the total number operator N( e ) = Z N (  ej). 
Then  

and 

N(  e k ) e j, . .  "Jr =Jkejl "" "Jr 

N(  e )ej, . . .j = (Zkj  )ej, . . .j, 

As an example,  if r =  1, we have V = C  and A V ~ C  2. Then  A(1)e o = 0 ,  
A(1)e I =e0 ,  A*(1)e o = e l ,  A*(1)e I = 0 .  Hence,  

0] 
The  field opera tors  become  

~r(1)=2_,/:[A(1)+A,(1)]=2-,/2[~ 1] 
~ ( 1 ) = - - 2 - ' / 2 i [ A ( 1 ) - - A ' ( 1 ) ] = 2 - 1 / 2 [  0 0 ]  
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These together with the location observable [~ o ]  give essentially, the 
Pauli spin matrices. 

As in the symmetric case, we define the second quantization of a normal 
operator H on V by F ( H ) = ~ ) t , A * ( h n ) A ( h n ) .  Many of the results of the 
previous section hold for F ( H )  except those involving the exponential 
vectors, for which there seems to be no counterpart in the antisymmetric 
case. In fact, the expressions are simpler in the antisymmetric case since 
j k = 0  or 1. 

This gives a hierarchy of second quantizations. For example, C t6 =A3C, 
and L2(R 4 ) :  SA2C. 
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